A Study of Secondary Compounds and Their Effects on Solar Cells

نویسنده

  • YI REN
چکیده

Ren, Y. 2017. Annealing of Cu2ZnSn(S,Se)4 Thin Films. A Study of Secondary Compounds and Their Effects on Solar Cells. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1476. 85 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9817-7. Kesterite Cu2ZnSnS4 (CZTS) is interesting as a sustainable photovoltaic technology due to its earth-abundant elements and suitable semiconducting properties. To date, a record efficiency of 12.6% has been achieved but further improvements are required to reach high efficiency for industrial implementation. Among the limiting issues is the understanding of the annealing process, which is crucial in promoting high material quality. In particular, the knowledge of the effects of segregated secondary compounds on solar cell performance is lacking. In contrast to formation of ZnS particles throughout CZTS film, it is notable that SnS forms and usually segregates on the CZTS top and rear surfaces. The influence of SnS on CZTS solar cells was studied by electron beam induced current measurements. It is found that SnS presence on the CZTS surfacecan introduce “dead area”, whereas it seems beneficial for solar cell current when accumulates on the CZTS rear. For SnS passivation and from investigation of the passivation effect from an Al2O3 thin layer at the CZTS rear, improvement in overall device performance could not be demonstrated, due to either poor CZTS bulk or non-optimal device structure. The limitation in CZTS bulk quality was shown from a thickness study where carrier collection saturated already about 700-1000 nm CZTS thickness. Formation of SnS alongside CZTS implies the anneal is limited by a deficient sulfur partial pressure (PS2). By looking into Sn-S phase transformations in SnS2 films after annealing, we find that PS2 drops rapidly over the annealing time, which could be well-correlated to a series of changes in CZTS material quality including secondary phase formations and defect modifications. It is shown that annealing CZTS under sufficiently high PS2 is critical for CZTS solar cells with high open circuit voltage (upto 783mV was reached), possibly due to the defect modification. Besides SnS, it is observed that NaxS compounds are also readily formed on CZTS surfaces, due to Na diffusion from the glass substrate during annealing. NaxS negatively affects the formation of the CdS/CZTS interface during chemical bath deposition. It can be removed by an oxidation process or wet chemical etching.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigations on Optoelectronic Properties of New low Gap Compounds Based on Pyrrole as Solar Cells Materials

In this paper theoretical study by using DFT method on three conjugated compound based on 2-styryl-5-phenylazo-pyrrole is reported. These dyes contain one carboxy, two carboxy and one sulfonic acid anchoring groups, the aim is to investigate their effects on the electronic structure. The theoretical knowledge of the HOMO and LUMO energy levels of the components is cannot be ignored in investiga...

متن کامل

Investigations of New Low Gap Conjugated Compounds Based on Thiophene-Phenylene as Solar Cells Materials

The research in new organic π-conjugated molecules with specific properties has become one of the most interesting topics in fields of materials chemistry. These materials are promising for optoelectronic device technology such as solar cells. On the other hand, the use of low band gap materials is a viable method for better harvesting of the solar spectrum and increasing its efficiency. The co...

متن کامل

Investigation of Organic Compounds as Photosensitizer for Dye Sensitized Solar Cells

Two organic compounds (SC-23=(E)-2-Cyano-3-(2,3-dimethoxyphenyl) acrylic acid and SC-25=(E)-2-Cyano-3-(2,5-dimethoxyphenyl) acrylic acid) involving methoxy groups as the electron donor and cyanoacrylic acid group as the electron acceptor have been investigated for dye sensitized solar cells. They shows a short-circuit current density (Jsc) of 2.08 and 1.81 mA cm-2, an open circuit voltage (Voc)...

متن کامل

Quantum Chemical Investigation of the Photovoltaic Properties of Conjugated Molecules Based Oligothiophene and Carbazole

The research in the organic π-conjugated molecules and polymers based on thiophenehas become one of the most interesting topics in the field of chemistry physics and materials science. These compounds have become the most promising materials for the optoelectronic device technology.. The use of low band gap materials is a viable method for better harvesting of the solar spectrum and increasing ...

متن کامل

The DFT chemical investigations of optoelectronic and photovoltaic properties of short-chain conjugated molecules

The research in the short-chain organic -conjugated molecules has become one of the most interesting topics in the fields of chemistry. These compounds have become the most promising materials for the optoelectronic device technology. The use of low band gap materials is a viable method for better harvesting of the solar spectrum and increasing its efficiency. The control of the band gap of th...

متن کامل

Materials Based on Carbazole for Organic Solar Cells Applications. Theoretical Investigations

The research in new organic π-conjugated molecules with specific properties has become one of the most interesting topics in fields of materials chemistry. These materials are promising for optoelectronic device technology such as solar cells. On the other hand, the use of low band gap materials is a viable method for better harvesting of the solar spectrum and increasing its efficiency. The Co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017